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Abstract: The present study reports the linear elastic analy-
sis of variable thickness functionally graded rotating disks.
Disk material is graded radially by varying the volume
fraction ratios of the constituent components. Three types
of distribution laws, namely power law, exponential law
and Mori–Tanaka scheme are considered on a concave
thickness profile rotating disk, and the resulting deforma-
tion and stresses are evaluated for clamped-free boundary
condition. The investigation is carried out using element
based grading of material properties on the discretized el-
ements. The effect of grading on deformation and stresses
is investigated for each type of material distribution law.
Further, a comparison is made between different types of
distributions. The results obtained show that in a rotating
disk, the deformation and stress fields can be controlled
by the distribution law and grading parameter n of the vol-
ume fraction ratio.

Keywords: Functionally graded material (FGM), linear
elastic analysis, rotating disk of variable thickness, ele-
ment based material gradation

1 Introduction
Components made of functionally graded materials
(FGMs) are widely used in space vehicles, aircrafts, nu-
clear power plants and many other engineering applica-
tions. FGMs are special composites with continuous spa-
tial variations of physical and mechanical properties. A

*Corresponding Author: Amit K. Thawait: Institute of Technology,
Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh,
India; Email: amkthawait@gmail.com; Tel.: +91 8103180085
Lakshman Sondhi: Shri Shankaracharya Technical Campus (SSGI),
Bhilai, 490020, Chhattisgarh, India
Shubhashis Sanyal, Shubhankar Bhowmick: National Institute of
Technology, Raipur, 492010, Chhattisgarh, India

rotating disk, made up of such an FGM is widely used in
the field of aerospace,mechanical andmarine industry for
machines and machine elements like gas turbines, gears
and flywheels. In rotating disks, the centrifugal load pro-
duces deformation and stresses, thus limiting the applica-
tion range, and as a result, these need to be constrained
by varying the material property and thickness of the disk.
Disks made up of functionally graded materials and of
variable thickness have significant stress reduction over
the disks made up of homogeneous material and of uni-
form thickness. Therefore, a higher limit speed and higher
pressure is permissible for FGM disks.

A few researchers have reported theirwork on the anal-
ysis of FGM disks, plates, shells, beams and bars using
the analytical and finite element method. Gupta et al. [1]
reported creep stress and strain rates for a rotating thin
annulus of varying density based on Seth’s transition the-
ory. Based on Tresca’s yield criterion under plane stress
assumption, Eraslan [2] presented analytical solutions for
stresses in elastic–plastic regime of rotating parabolic
disks. Using vonMises yield criterion, J2–deformation the-
ory and nonlinear isotropic hardening, Eraslan et al. [3]
conducted the parametric elastic–plastic analysis of rotat-
ing annular disks of variable thickness under pressurized
boundary condition. Ramanjaneyulu et al. [4] have stud-
ied the effect of tapper stiffeners and material properties
on critical speeds of very thin spinning disc. Analysis was
carried out for different numbers of stiffeners and vari-
able geometry of disk under clamped-free boundary condi-
tion. Stump et al. [5] explained the topology optimization
framework for material distribution of an FG rotating disk
under mechanical stress constraints. The scheme of func-
tionally graded material distribution is based on the mate-
rial model derived using the Hashin-Strikhman upper and
lower bounds.

Bayat et al. [6] reported the analysis of variable thick-
ness FGM rotating disk with power law property distri-
bution and the disk is subjected to both mechanical and
thermal loads. Afsar et al. [7] analyzed a rotating FGM cir-
cular disk subjected to thermo-mechanical load using fi-
nite element method. The disk has exponentially varying
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material properties in radial direction. The disk is sub-
jected to a thermal load along with centrifugal load due to
non-uniform temperature distribution. Zenkour et al. [8]
reported numerical solution for varying thickness annu-
lar disk rotating under clamped–clamped condition. Cal-
lioglu et al. [9] studied the internally pressurized rotating
FG annular disk under different temperature distributions
and in another work, [10] reported the analytical thermo-
elastic solution for FG disk. Bayat et al. [11] studied the
displacement and stresses in a rotating FG disk of varying
thickness using the semi-analytical method. Radially vary-
ing one-dimensional FGM is taken andmaterial properties
vary according to the power law andMori–Tanaka scheme.
In another work, Callioglu et al. [12] reported the effect of
power lawmaterial property distribution on stress and dis-
placement in thin FGM disks. For two different thickness
profiles of annular disks, Zenkour et al. [13] presented the
exact analytical and numerical solutions based on Runge–
Kutta method under free–free boundary conditions.

Sharma et al. [14] reported the finite element method
(FEM) based two-dimensional thermo-elastic results for
a thin circular rotating disk subjected to a thermal load.
In another work, Sharma et al. [15] studied stresses, dis-
placements and strains in a thin circular (FGM) disk using
FEM under thermo-mechanical loading. Ali et al. [16] re-
ported their study on the elastic analysis of two sigmoid
FGM rotating disks, wherein metal–ceramic–metal disk is
analyzed for both uniform and variable thickness disks,
and the effect of grading index on the displacement and
stresses are reported. In the case of a three-layered (per-
fectly bonded) composite rotating elastic stresses are re-
ported by Peng et al. [17] for two cases: firstly, considering
FGM with power-law gradient; and in second, FGM with
radial non-homogeneity by reducing the problem into a
Fredholm integral equation. Using VMP method, Jahromi
et al. [18] presented the elasto-plastic stresses and effect
of metal–ceramic grading patterns and relative densities
and elastic moduli on the stresses in a rotating FG disk.
Maruthi et al. [19] reported a finite element model to pre-
dict over-speed and burst-margin limits of aero-engine tur-
bine disc rotating in the range of 10,000 rpm to 22,000 rpm
at different temperatures. In a recentwork, Nejad et al. [20]
proposed the analytical solution of an exponentially vary-
ing FG disk under internal and external pressure bound-
ary conditions. Shariyat et al. [21] reported 3D bending and
stress analyses of rotating annular disks having functional
grading in two directions using Hermite elements.

Jabbari et al. [22] developed an analytical solution
for computing plastic stresses and critical angular speed
in FG solid and annular disks assuming power law ma-
terial property distribution. Tutuncu et al. [23] analyzed

the FG rotating disks of varying thickness under non-
uniform temperature difference using the complementary
functions method. Nejad et al. [24] obtained an exact solu-
tion for the elastic stresses in FG rotating disk assuming ex-
ponential material property variation under internal and
external pressure boundary conditions. In a recent work,
Zafarmand et al. [25] presented a 2D elastic analysis of an-
nular and solid FG rotating disks of non-uniform thickness
based on graded finite element method (GFEM). Rosyid
et al. [26] reported the solution of rotating, nonhomoge-
neous disk of arbitrary thickness for three types of grad-
ing law namely power law, sigmoid and exponential dis-
tribution law. For similar material distribution, Bhandari
et al. [27] investigated the behavior of functionally graded
plates and reported parametric studies for varying volume
fraction distributions and boundary conditions. Assum-
ing nonlinear elasticity, Zafarmand et al. [28] investigated
the FG single-walled carbon nanotubes reinforced thick
rotating disks of varying thickness, wherein the nonlin-
ear governing equations are derived and solved using non-
linear graded finite element method (NGFEM). Based on
Galerkin’s error minimization principle, Sondhi et al. [29]
investigated the stress anddeformation state of FG rotating
annular disks of constant thickness. Thawait et al. [30, 31]
studied the FGM disks having exponential material prop-
erty variation subjected to clamped-free boundary condi-
tion and reported the effect of the thickness variation on
stress anddeformation for different geometries of constant
mass.

In the present work, rotating disks of parabolic con-
cave thickness profile and of different grading distribu-
tion functions are analyzed. The distribution functions of
material grading along the radial direction considered in
this study are power law function, exponential function
and Mori–Tanaka scheme. These distributions are imple-
mented in the FEM using element based material grading.
A finite element formulation for the problem is reported,
which is based on the principle of stationary total poten-
tial. Disks are subjected to centrifugal body load and have
clamped-free boundary condition. The work aims to inves-
tigate the effect of grading parameter “n” on the deforma-
tion and stresses for different material gradation law.

2 Problem Formulation
In this section, geometric equations as well as different
types of material property distributions are presented and
the governing equations for the rotating disk are derived.
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2.1 Material modeling

Three types of material models, namely Mori–Tanaka
scheme [11], power law distribution [9] and exponential
distribution [7] are considered in the present analysis. The
effective Young’s modulus E(r) and density ρ(r) of a disk
having inner radius a and outer radius b can be obtained
as:

2.1.1 Mori–Tanaka scheme

For the FG disk, the effective bulk modulus B(r) and shear
modulus G(r) based onMori–Tanaka scheme [11] are given
by:

B (r) = (Bb − Ba) /Vb
(︂
1 + (1 − Vb)

3 (Bb − Ba)
3Ba + 4Ga

)︂
(1)

+ Ba

G (r) = (Gb − Ga) /Vb
(︂
1 + (1 − Vb)

(Gb − Ga)
Ga + f1

)︂
+ Ga (2)

f1 =
Ga (9Ba + 8Ga)
6 (Ba + 2Ga)

(3)

Here, V is the volume fraction of the phase material, sub-
scripts “a” and “b” correspond to the inner and outer ma-
terials, respectively. The inner and outer material volume
fractions are related by:

Va + Vb = 1 (4)

Here, Vb is expressed as:

Vb =
(︁ r − a
b − a

)︁n
(5)

where n (n ≥ 0) is the volume fraction exponent. The elas-
tic modulus E can be found as:

E (r) = 9B (r)G (r)
3B (r) + G (r)

(6)

Density, ρ is calculated using the rule of mixtures as:

ρ (r) = (ρb − ρa)
(︁ r − a
b − a

)︁n
+ ρa (7)

2.1.2 Power law

E (r) = Eb
(︁ r
b

)︁n
(8)

ρ (r) = ρb
(︁ r
b

)︁n
(9)

where Eb is modulus of elasticity and ρb is density at the
outer radius.

2.1.3 Exponential law

E (r) = E0eβr (10)

ρ (r) = ρ0e𝛾r (11)

E0 = Eae−βa (12)

ρ0 = ρae−𝛾a (13)

𝛾 = 1
a − b ln

(︂
ρa
ρb

)︂
(14)

β = 1
a − b ln

(︂
Ea
Eb

)︂
(15)

Ei and Eo are modulus of elasticity, and ρi and ρo are den-
sity at the inner and outer radius, respectively.

In FEM, the functional grading is popularly carried out
by assigning the average material properties over a given
geometry followed by adhering to the geometries, thus re-
sulting into layered functional grading of material proper-
ties. The downside of this approach is that it yields singu-
lar field variable values at the boundaries of the glued ge-
ometries, means a jump of the values of the material prop-
erties can be observed at the element boundaries. To get
better results, instead of assigning average material prop-
erties to each element, material properties are varied in-
side the element boundaries, using the same shape func-
tions used to interpolate the displacement fields [25].

ϕe =
8∑︁
i=1

ϕiNi (16)

where ϕe is element material property, ϕi is material prop-
erty at node i and Ni is the shape function.

2.2 Geometric modeling

Figure 1 shows the axisymmetric cross section and geomet-
ric parameters of an annular disk. The governing equation
of radially varying thickness disk is assumed as:

h (r) = h0
[︂
1 − q

(︁ r − a
b − a

)︁k]︂
(17)

where h(r) and h0 are half of the thickness at radius r and
root of the disk, respectively; a and b are inner and outer
radius; k and q are the constants that control the thickness
profiles of the disk. For uniform thickness disk, q = 0, and
for variable thickness, q > 0; k < 1 for concave thickness
profile.
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Figure 1: Cross section and geometric parameters of the rotating
disk

2.3 Finite element modeling

The rotating disk, being thin, is modeled as a plane stress
axisymmetric problem. Using quadratic quadrilateral el-
ement, the element displacement vector {u} can be ob-
tained as [32]:

{u} = [N] {δ}e (18)

where {u} is element displacement vector, [N] is matrix of
quadratic quadrilateral shape functions and {δ}e is nodal
displacement vector.

[N] =
[︁
N1 N2 . . . N8

]︁

{δ}e =
{︁
u1 u2 . . . . . . u8

}︁T
The strain components are related to elemental displace-
ment components as:

{ε} =
{︁
εr εθ

}︁T
= [B] {δ}e (19)

where ϵr and ϵθ are radial and circumferential strain,
respectively. [B] is strain–displacement relationship ma-
trix, which contains derivatives of shape functions. For a
quadratic quadrilateral element, it is calculated as:

[B] = [B1] × [B2] × [B3] (20)

[B1] =
[︃
1 0 0
0 0 1

]︃
(21)

[B2] =

⎡⎢⎣
J22
|J|

−J12
|J| 0

−J21
|J|

J11
|J| 0

0 0 1

⎤⎥⎦ (22)

where J is the Jacobianmatrix, used to transform the global
coordinates into natural coordinates. It is given as:

[J] =

⎡⎢⎢⎣
8∑︀
i=1

∂Ni
∂ξ ri

8∑︀
i=1

∂Ni
∂ξ zi

8∑︀
i=1

∂Ni
∂η ri

8∑︀
i=1

∂Ni
∂η zi

⎤⎥⎥⎦ (23)

[B3] =

⎡⎢⎣
∂N1
∂ξ

∂N2
∂ξ . . . ∂N8

∂ξ
∂N1
∂η

∂N2
∂η . . . ∂N8

∂η
N1
r

N2
r . . . . N8

r

⎤⎥⎦ (24)

FromHooke’s law, components of stresses in radial and cir-
cumferential direction are related to components of total
strain as:

{σ} =
{︁
σr σθ

}︁T
= [D (r)] {ε} (25)

where D(r) is stress strain relationship matrix, which is
given as:

D (r) = E (r)
(1 − ν)2

[︃
1 ν
ν 1

]︃
(26)

Upon rotation, the disk experiences a body force, which
under constrained boundary results in deformation and
stores internal strain energy [32]. Also, there exists a work
potential due to body force resulting from centrifugal ac-
tion. The element level strain energyUe andworkpotential
Ve are given as:

Ue = ∫
V
πrhr{δ}eT [B]T [D (r)] [B] {δ}e dr (27)

Ve = −2 ∫
V
πrhr{δ}eT [N]T {qv} dr (28)

where {qv} is body force vector. For a disk rotating at ω
rad/sec, {qv} for each element is given by:

{qv} =
{︃
ρ (r)ω2r

0

}︃
(29)

The total potential of the element is obtained as:

πpe = Ue + Ve =
1
2{δ}

eT [K]e{δ}e − {δ}eT{f}e (30)

Here, element stiffness matrix, [K]e and element load vec-
tor, {f}e are:

[K]e = 2 ∫
V
πrhr[B]T [D (r)] [B] dr (31)

{f}e = 2 ∫
V
πrhr[N]T {qv} dr (32)
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By transforming the global coordinates into natural coor-
dinates,

[K]e = 2π
1
∫
−1

1
∫
−1
[B]T [D (r)] [B] r |J| dξdη (33)

{f}e = 2π
1
∫
−1

1
∫
−1
[N]T {qv} r |J| dξdη (34)

The element matrices are then assembled to yield the
global stiffness matrix and global load vector, respectively.
Total potential energy of the disk is given by:

πp =
∑︁

πpe =
1
2{δ}

T [K] {δ} − {δ}T {F} (35)

where

[K] =
N∑︁
n=1

[K]e = Global Stiffness matrix

{F} =
N∑︁
n=1

[f ]e = Global load vector

N = number of elements.

Using the Principle of Stationary Total Potential
(PSTP), the total potential is set to be stationary with re-
spect to small variation in the nodal degree of freedom,
that is,

∂πp
∂{δ}T

= 0 (36)

From above, the system of simultaneous equations is ob-
tained as follows:

[K] {δ} = {F} (37)

In this section, geometric equations as well as differ-
ent types of material property distributions are presented
and the governing equations for the rotating disk are de-
rived.

3 Results and Discussion

3.1 Validation

A uniform thickness rotating disk (n = 0 in ceramic–metal
FGM disk modeled by Mori–Tanaka scheme) and a con-
cave thickness profile disk (n = 0 in metal–ceramic FGM
diskmodeled byMori–Tanaka scheme) [11] is reconsidered
and analyzed again and results are presented in Figure 2.
The results obtained are in good agreement with the pre-
established results of reference.

3.2 Numerical results and discussion

In this section, the rotating annular disks of parabolic
concave thickness profile and made of aluminum and zir-
conia ceramic as per different FG distribution functions
are analyzed and the effects of grading parameter n on
stresses and deformation states are investigated. The ma-
terial properties of aluminum and zirconia are given in Ta-
ble 1 [11]. The disks have geometric parameters as k = 0.5,
inner diameter = 0.2m, outer diameter = 1m, q = 0.96 and
h0 is 0.075 m. Disks are assumed to be rotating at unit an-
gular velocity and have clamped-free boundary condition.
Figure 3 to Figure 8 show thedistributions ofE and ρ for dif-
ferent distribution laws. Grading index n = 0 indicates that
the disk is made of outer material completely, that is, the
disk is homogeneous in composition. For ceramic–metal

Table 1: Aluminum and zirconia properties [11]

Material E (GPa) ρ (kg/m3) G (GPa) υ
Aluminum 70 2700 26.9231 0.3
Zirconia 151 5700 58.0769 0.3

Figure 2: Comparison of the results of current work with reference

Figure 3: Distribution of E for exponential FG disks
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Figure 4: Distribution of density for exponential FG disks

Figure 5: Distribution of E for Mori–Tanaka disks

Figure 6: Distribution of density for Mori–Tanaka disks

FGM, n = 0 indicates homogeneous metallic (aluminum)
disk, while for metal–ceramic FGM, it indicates homoge-
neous ceramic (zirconia) disk. For values of n other then 0,
volume fraction varies with the radius according to differ-
ent equations and gives different types of FGMs.

Figure 9 to Figure 20 report the distributions of dis-
placement and stresses for all the three material distribu-
tion functions. It can be observed that the ceramic–metal

Figure 7: Distribution of E for power law FG disks

Figure 8: Distribution of density for power law FG disks

Figure 9: Displacements for exponential FG disks

FG disks have less deformation and higher stresses as com-
pared to the metal–ceramic FG disks. Displacement at in-
ner radius and radial stress at the outer radius confirms
the clamped-free boundary condition applied on the disks.
In the metal–ceramic FG disks modeled by Mori–Tanaka
scheme, the radial deformation increases and stress de-
creases with an increasing value of grading parameter
n, while in the ceramic–metal FG, radial deformation de-
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Figure 10: Radial stress for exponential FG disks

Figure 11: Circumferential stress in exponential FG disks

Figure 12: Equivalent stress in exponential FG disks

creases and stress increases with an increasing value of
n. Increasing n means volume fraction of the outer ma-
terial is decreasing and inner material is increasing. In
case ofmetal–ceramic FG, increasingmetallic content and
decreasing ceramic content results in higher deformation
and lesser stress, while in the case of ceramic–metal FGM,

Figure 13: Displacements for Mori–Tanaka disks

Figure 14: Radial stresses for Mori–Tanaka FGM disks

Figure 15: Circumferential stresses for Mori–Tanaka disks

increasing ceramic and decreasing metallic content re-
sults in higher stress and lesser deformation.

Metal–ceramic FG having n = 0 has the highest stress
and n = 1.5 has the highest deformation, while ceramic–
metal FG having n = 0 report the lowest stress and n = 1.5
report the lowest deformation among all the FG modeled
by Mori–Tanaka scheme. In power law, FG disk radial de-
formation increases and stress decreases with an increas-



Stress and Deformation Analysis of Clamped Functionally graded Rotating Disks with Variable Thickness | 209

Figure 16: Equivalent stresses for Mori–Tanaka disks

Figure 17: Displacements for power law FG disks

Figure 18: Radial stress for power law FG disks

ing grading parameter n. Increasing n decreases (r/b) ratio,
which decreases E(r), and hence, deformation increases
and stress decreases. FG disk having metal at outer sur-
face and n = 1.5 has maximum radial deformation and
minimum radial, circumferential and von Mises or equiv-
alent stresses, while disk having n = 0.5 and ceramic at
outer radius has minimum radial deformation and maxi-
mum stresses. Further, it is also observed that radial stress

Figure 19: Circumferential stress for power law FG disks

Figure 20: Equivalent stresses for power law FG disks

is higher as compared to circumferential and von Mises
stress for all the cases. Therefore, for designing the rotat-
ing disks, radial stress should be taken as a limit work-
ing stress criteria. By comparing all types of distribution
laws, it is observed that the power law FG disk, having
metal at outer radius and n = 1.5, has the highest radial
deformation and least radial stress, while the exponential
law (ceramic–metal) disk has the lowest radial deforma-
tion and disk of full ceramic has the highest radial stress.
Therefore, it is suggested that FG modeled by power law
having metal at outer radius and n = 1.5 can be most effec-
tively employed for rotating disk.

4 Conclusions
The present work proposes a study using element based
gradation of varying material property of rotating disks
and reports the stress and deformation behavior of con-
cave thickness clamped rotating FGM disks. Different
types of distribution laws having aluminumas ametal and
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zirconia as a ceramic is considered, and metal–ceramic
as well as ceramic–metal – both types of FGMs are ana-
lyzed. Principle of stationary total potential (PSTP) is used
for finite element formulation. The results obtained are
found to be in good agreement with established reports. It
is observed that there is a significant reduction in stresses
and deformation behavior of the FGM disks compared to
the homogeneous disks. Further, it is observed that metal–
ceramic FGMdiskhavingn= 1.5 andmodeledbypower law
possesses better strength than all other FGMs investigated,
and therefore, is most efficient for the purpose of rotating
disk under clamped-free condition.
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